Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(3): e0264787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275950

RESUMO

Alterations of cholesterol metabolism have been described for many neurodegenerative pathologies, such as Alzheimer's disease in the brain and age-related macular degeneration in the retina. Recent evidence suggests that glaucoma, which is characterized by the progressive death of retinal ganglion cells, could also be associated with disruption of cholesterol homeostasis. In the present study we characterized cholesterol metabolism in a rat model of laser-induced intraocular hypertension, the main risk factor for glaucoma. Sterol levels were measured using gas-chromatography and cholesterol-related gene expression using quantitative RT-PCR at various time-points. As early as 18 hours after the laser procedure, genes implicated in cholesterol biosynthesis and uptake were upregulated (+49% and +100% for HMG-CoA reductase and LDLR genes respectively, vs. naive eyes) while genes involved in efflux were downregulated (-26% and -37% for ApoE and CYP27A1 genes, respectively). Cholesterol and precursor levels were consecutively elevated 3 days post-laser (+14%, +40% and +194% for cholesterol, desmosterol and lathosterol, respectively). Interestingly, counter-regulatory mechanisms were transcriptionally activated following these initial dysregulations, which were associated with the restoration of retinal cholesterol homeostasis, favorable to ganglion cell viability, one month after the laser-induced ocular hypertension. In conclusion, we report here for the first time that ocular hypertension is associated with transient major dynamic changes in retinal cholesterol metabolism.


Assuntos
Glaucoma , Hipertensão Ocular , Animais , Colesterol/metabolismo , Modelos Animais de Doenças , Glaucoma/metabolismo , Hipertensão Ocular/metabolismo , Ratos , Retina/patologia , Células Ganglionares da Retina/patologia
2.
Nutrients ; 13(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806985

RESUMO

Diet shapes the gut microbiota which impacts hepatic lipid metabolism. Modifications in liver fat content are associated with metabolic disorders. We investigated the extent of dietary fat and fiber-induced alterations in the composition of gut microbiota and hepatic fatty acids (FAs). Mice were fed a purified low-fat diet (LFD) or high-fat diet (HFD) containing non-soluble fiber cellulose or soluble fiber inulin. HFD induced hepatic decreases in the amounts of C14:0, C16:1n-7, C18:1n-7 and increases in the amounts of C17:0, C20:0, C16:1n-9, C22:5n-3, C20:2n-6, C20:3n-6, and C22:4n-6. When incorporated in a LFD, inulin poorly affected the profile of FAs. However, when incorporated in a HFD, it (i) specifically led to an increase in the amounts of hepatic C18:0, C22:0, total polyunsaturated FAs (PUFAs), total n-6 PUFAs, C18:3n-3, and C18:2n-6, (ii) exacerbated the HFD-induced increase in the amount of C17:0, and (iii) prevented the HFD-induced increases in C16:1n-9 and C20:3n-6. Importantly, the expression/activity of some elongases and desaturases, as well as the gut microbiota composition, were impacted by the dietary fat and fiber content. To conclude, inulin modulated gut microbiota and hepatic fatty acid composition, and further investigations will determine whether a causal relationship exists between these two parameters.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Inulina/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Glicemia/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dieta com Restrição de Gorduras , Gorduras na Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Ácidos Graxos Insaturados/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Triglicerídeos/sangue
3.
Exp Eye Res ; 196: 108059, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387380

RESUMO

Structure and function of the retina mainly rely on its fatty acid (FA) composition. Evidence from epidemiological studies and from animal experiments indicates that FA composition of the retina is influenced by the diet. Mice under chronic high-fat diet (HFD) develop metabolic syndrome, a risk factor for diabetes that is associated with structural and functional alterations of the retina. Here, we studied the impact of chronic exposure of mice to HFD on retinal FA composition. C57BL/6 J male mice were fed either a chow diet or a HFD for 11 weeks. As expected, HFD induced weight gain, adiposity, hyperglycemia and dyslipidemia. The retinal FA composition was determined by gas chromatography coupled to flame ionization detection. No significant change in the relative abundance of total saturated FAs (SFAs), total monounsaturated FAs (MUFAs) or total polyunsaturated FAs (PUFAs) was observed. However, retinas of HFD-fed mice displayed decreased amounts of C24:0 (p = 0.0231), C16:1n-7 (p < 0.0001), C18:1n-7 (p < 0.0001), C20:3n-9 (p = 0.0425) and C20:3n-6 (p = 0.0008), and an increased amount of C20:2n-6 (p < 0.0001). In addition, the ratio of linoleic acid (C18:2n-6) to alpha-linolenic acid (C18:3n-3) was increased in the retinas of HFD-fed mice (15.0 ± 0.8 versus 11.8 ± 0.6 in HFD and CD, respectively, p = 0.0045). No modification in the contents of arachidonic acid (C20:4n-6, AA) and docosahexaenoic acid (C22:6n-3, DHA) were observed. Analysis of dimethylacetals (DMA), which are residues of plasmalogens (Pls), revealed that the amount of Pls containing octadecanal-aldehydes (DMA C18:0) was significantly increased in HFD-fed mice (p = 0.0447). This increase was, at least in part, balanced by a decrease in Pls containing 7-octadecanal-aldehydes (DMA C18:1n-7) (p = 0.0007). In conclusion, HFD had an impact on the relative proportion of essential dietary fatty acids linoleic acid and alpha-linolenic acid that are incorporated in the retina. However, this imbalance in PUFA precursors did not alter the content of the two major retinal long-chain PUFAs, AA and DHA. HFD consumption also led to alterations in the retinal SFAs, MUFAs and Pls profiles.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Linoleicos/metabolismo , Síndrome Metabólica/etiologia , Retina/metabolismo , Ácido alfa-Linolênico/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Glicemia/metabolismo , Cromatografia Gasosa , Dislipidemias/etiologia , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/metabolismo , Hiperglicemia/etiologia , Fígado/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasmalogênios/metabolismo , Aumento de Peso/efeitos dos fármacos
4.
Exp Eye Res ; 189: 107857, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31654618

RESUMO

Communication between neurons and glia plays a major role in nervous tissue homeostasis. It is thought to participate in tuning cholesterol metabolism to cellular demand, which is a critical issue for neuronal health. Cholesterol is a membrane lipid crucial for nervous tissue functioning, and perturbed regulation of its metabolism has been linked to several neurodegenerative disorders. In the brain, 24(S)-hydroxycholesterol (24S-OHC) is an oxysterol synthesized by neurons to eliminate cholesterol, and 24S-OHC has been shown to regulate cholesterol metabolism in astrocytes, glial cells which provide cholesterol to neurons. In the retina, 24S-OHC is also an elimination product of cholesterol produced by neurons, especially the retinal ganglion cells. However, it is not known whether Müller cells, the major macroglial cells of the retina, play the role of cholesterol provider for retinal neurons and whether they respond to 24S-OHC signaling, similarly to brain glial cells. In the present study, primary cultures of rat Müller cells were treated with 0, 0.5 or 1.5 µM 24S-OHC for 48 hours. The levels of cholesterol, precursors and oxysterols were quantified using gas chromatography coupled to flame-ionization detection or mass spectrometry. In addition, the expression of key genes related to cholesterol metabolism was analyzed using RTq-PCR. Müller cells were shown to express many genes linked to cholesterol metabolism, including genes coding for proteins implicated in cholesterol biosynthesis (HMGCR), cholesterol uptake and export via lipoproteins (LDL-R, SR-BI, ApoE and ABACA1) and regulation of cholesterol metabolism (SREBP2 and LXRß). Cholesterol and several of its precursors and oxidative products were present. CYP27A1, the main retinal enzyme implicated in cholesterol elimination via oxysterol production, was quantified at low transcript levels but neither of its two typical products were detected in Müller cells. Furthermore, our results demonstrate that 24S-OHC has a strong hypocholesterolemic effect in Müller cells, leading to cholesterol depletion (-37 % at 1.5 µM). This was mediated by a decrease in cholesterol synthesis, as illustrated by reduced levels of cholesterol precursors: desmosterol (-38 % at 1.5 µM) and lathosterol (-84 % at 1.5 µM), and strong downregulation of HMGCR gene expression (2.4 fold decrease at 1.5µM). In addition, LDL-R and SR-BI gene expression were reduced in response to 24S-OHC treatment (2 fold and 1.6 fold at 1.5 µM, respectively), suggesting diminished lipoprotein uptake by the cells. On the contrary, there was a dramatic overexpression of ABCA1 transporter (10 fold increase at 1.5 µM), probably mediating an increase in cholesterol efflux. Finally, 24S-OHC induced a small but significant upregulation of the CYP27A1 gene. These data indicate that Müller cells possess the necessary cholesterol metabolism machinery and that they are able to sharply adjust their cholesterol metabolism in response to 24S-OHC, a signal molecule of neuronal cholesterol status. This suggests that Müller cells could be major players of cholesterol homeostasis in the retina via neuron-glia crosstalk.


Assuntos
Colesterol/metabolismo , Células Ependimogliais/metabolismo , Hidroxicolesteróis/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Retina/metabolismo , Animais , Células Cultivadas , Células Ependimogliais/citologia , Modelos Animais , Neuroglia/citologia , Neurônios/citologia , Ratos , Ratos Long-Evans , Retina/citologia
5.
Sci Rep ; 9(1): 5997, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979946

RESUMO

Way of life changes such as high consumption of processed foods rich in fat and sugar and sedentary lifestyle are associated with the increasing prevalence of metabolic syndrome (MetS) that affects about 35% in the American population. MetS is the main risk factor for diabetes mellitus, which is associated with vascular changes in the retina. However, the early consequences of MetS in the retina are not well described. We therefore aimed at characterizing the early effects of a high fructose and high fat diet (HFHF) on the function and structure of the rat retina, and evaluate the associations with metabolic changes. Brown Norway rats of 6 weeks of age were fed for 8 days, 5 weeks or 13 weeks with HFHF diet, or a standard chow. After only 4 weeks of this diet, rats exhibited a reduction in cone photoreceptor sensitivity to light. Moreover, we observed that MetS significantly exacerbated laser-induced choroidal neovascularization by 72% and 67% 2 weeks and 3 weeks post laser treatment, respectively. These retinal abnormalities were associated with deregulation of glucose metabolism but not lipid metabolism. These data showed retinal modifications in HFHF-induced MetS in the rat, at very early stage of the disease.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Frutose/efeitos adversos , Glucose/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Neovascularização de Coroide/induzido quimicamente , Dislipidemias/metabolismo , Fígado Gorduroso/induzido quimicamente , Gliose/induzido quimicamente , Resistência à Insulina , Ratos , Retina/patologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/fisiologia , Fatores de Tempo
6.
Chem Phys Lipids ; 207(Pt B): 179-191, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28576383

RESUMO

Glaucoma is a progressive and irreversible blinding neuropathy that is characterized by the loss of retinal ganglion cells (RGCs). Muller Glial Cell (MGC) activation is induced in retinal gliosis. MGCs are the most numerous glial cells in the retina and one of their roles is to sustain cholesterol homeostasis. 24S-hydroxycholesterol (24S-OHC) is one of the form of cholesterol elimination from the retina and is overexpressed during glaucoma. The objective of this study was to determine whether 24S-OHC triggers MGC membrane dynamics involving lipid rafts and contributes to gliosis at early and late time points. A proteomic analysis was carried out by nanoLC-MS/MS in raft and non-raft fractions from MGCs after treatment with 24S-OHC (10µM). The expression of structural and functional proteins was further analyzed by Western-blotting, as well as the levels of GM3 ganglioside by LC-MS. Cholesterol, sphingomyelin, saturated fatty acids and ganglioside GM3 are enriched in the rafts fractions in MGCs. Caveolin-1, flotillin-1, connexin-30 and -43 are localized in the MGCs rafts. Proteins implicated in adhesion or oxidative stress pathways in raft fractions were up and down-regulated by the treatment. Our data showed that 24S-OHC induced early changes in protein distribution in raft microdomains; however, further studies are needed to better characterize the surrounded mechanisms.


Assuntos
Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , Células Ependimogliais/citologia , Glaucoma/metabolismo , Hidroxicolesteróis/farmacologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Ratos , Ratos Long-Evans
7.
Biochimie ; 94(4): 932-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21396425

RESUMO

To evaluate the effects of alpha-lipoic acid (AL) in a model of doxorubicin (DOX)-induced cardiotoxicity, male Wistar rats were treated with DOX (1 mg/kg/d; 10 d) in combination or not with AL (50 mg/kg/d; 15 d). Plasma oxidative stress was determined by hydroperoxides (ROOH) and the ascorbyl radical/ascorbate ratio. One and two months later, the functional parameters of the hearts were determined in vivo by catheterization and cardiac oxidative stress was assessed by malonedialdehyde (MDA) and O2*⁻ (dihydroethidium fluorescence) content in tissue. After two months, body weight was higher in the DOX-AL group than in DOX (+16%), but this was due to ascites. Histological liver alterations were observed in both the DOX and DOX-AL groups. Plasma ROOH concentrations decreased after 10 days of AL treatment, but were greater in both the DOX and DOX-AL groups. After two months, a decrease in the cardiac contractility index (-27% and -29%, respectively) and cardiac hypertrophy were observed in DOX and DOX-AL. These dysfunctions were associated with 1) a reduction in plasma ascorbate levels and an increase in the ascorbyl/ascorbate ratio and 2) an increase MDA and O2*⁻ content in cardiac tissue. In conclusion, a cumulative dose of 10 mg/kg doxorubicin induced functional alterations in the heart associated with plasma and cardiac oxidative stress. The co-administration of the antioxidant compound AL had no beneficial effects in this situation.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Antioxidantes/uso terapêutico , Cardiotônicos/uso terapêutico , Cardiotoxinas/toxicidade , Doxorrubicina/toxicidade , Cardiopatias/prevenção & controle , Coração/efeitos dos fármacos , Estresse Oxidativo , Ácido Tióctico/uso terapêutico , Animais , Antioxidantes/farmacologia , Líquido Ascítico/patologia , Ácido Ascórbico/sangue , Peso Corporal/efeitos dos fármacos , Cardiotônicos/farmacologia , Ingestão de Alimentos , Coração/fisiopatologia , Cardiopatias/sangue , Cardiopatias/induzido quimicamente , Hematócrito , Peróxido de Hidrogênio/sangue , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxidos/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Ácido Tióctico/farmacologia
9.
Curr Opin Clin Nutr Metab Care ; 10(6): 664-70, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18089945

RESUMO

PURPOSE OF REVIEW: Thermogenesis is activated at the expense of carbon molecules. Mitochondria play a dominant role in oxidation and parallel heat production since the recovery of oxidation energy is less than perfect. Recent data of mitochondriogenesis and mitochondrial thermogenesis may boost research into certain aspects of obesity. RECENT FINDINGS: Recent studies have outlined the unexpected decreased thermogenesis that limits fat loss during prolonged food restriction. Activation of fat oxidation in skeletal muscle remains a strategy against fat accumulation, however. Certain adipose depots have the potential to promote thermogenesis, either using mitochondrial uncoupling protein or independently. Peroxisome proliferator-activated receptor gamma coactivators alpha and ss are important regulators of mitochondria thermogenesis. Brain mitochondria are involved in the control of refeeding after starvation. This dual action of mitochondria inform their role in thermogenesis and energy partitioning. The importance of thyroid hormones in mitochondria thermogenesis is also confirmed. SUMMARY: The clinical and research implications of these findings are that the mechanisms inhibiting adaptive thermogenesis during diet restriction should be investigated. An important field of research is the contribution of transcriptional coactivators to adipocyte plasticity since adipocytes have an underestimated ability to oxidise fatty acids in addition to their role in triglyceride storage.


Assuntos
Tecido Adiposo/metabolismo , Dieta Redutora , Metabolismo Energético/fisiologia , Obesidade/metabolismo , Termogênese/fisiologia , Humanos , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Obesidade/dietoterapia , Oxirredução , PPAR gama/metabolismo , Hormônios Tireóideos/metabolismo , Proteína Desacopladora 1
10.
Am J Physiol Heart Circ Physiol ; 292(3): H1600-6, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17040970

RESUMO

We reported previously that glycerol is a substrate for energy production in cardiomyocytes. Increasing glycerol availability results in increased glycerol uptake and its involvement in complex lipid biosynthesis and energy production. This study evaluated the relationship between glycerol supply, energy demand, and intermediary metabolism leading to energy production. The work was performed on isolated rat heart perfused in the working mode. Glycerol concentrations modeled the fasting (0.33 mM) and fed (3.33 mM) states. Cardiac energy demand was modeled by increasing heart rate from 350 to 450 beats/min (bpm). Increasing glycerol supply increased glycerol uptake from 1.4 (350 bpm) to 3.8 (450 bpm) and from 9.7 (350 bpm) to 34.2 (450 bpm) micro mol glycerol/heart in 30 min at 0.33 and 3.33 mM glycerol, respectively. At low glycerol supply, increasing heart rate did not influence the complex lipid synthesis. Conversely, high glycerol concentration increased the complex lipid synthesis by 5- and 30-fold at 350 and 450 bpm, respectively. Increasing glycerol supply and heart rate significantly increased glycerol oxidation rate. Moreover, increasing glycerol supply did not affect glucose oxidation but increased palmitate uptake and significantly decreased its beta-oxidation. Physiological concentrations of glycerol contribute to the cardiac intermediary metabolism, both for energy production and glycerolipid synthesis. Increasing energy demand enhances the requirement and use of glycerol. Glycerol contributes to the regulation of cardiac metabolism and energy balance, mainly by decreasing the contribution of fatty acid oxidation, and may thus represent a new factor in cardiac protection through the reduction of oxygen demand.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Glicerol/farmacologia , Miocárdio/metabolismo , Animais , Coração/efeitos dos fármacos , Coração/fisiologia , Homeostase , Técnicas In Vitro , Masculino , Modelos Animais , Ratos , Ratos Wistar
11.
Biochim Biophys Acta ; 1761(7): 765-74, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16843721

RESUMO

Although lipids are largely involved in cardiovascular physiopathology, the lipid metabolism in endothelial cells remains largely unknown. Human umbilical vein endothelial cells (HUVECs) were used to investigate the metabolism of complex lipids. The membrane phospholipid homeostasis results from both de novo synthesis and remodelling that ensures the fine tuning of the phospholipid fatty acid composition. Using [(3)H]-glycerol and phosphoderivatives we showed the efficiency of glycerolipid synthesis from glycerol (0.9 nmol h(-1) mg proteins(-1)), but not from its phosphorylated form suggesting the requirement of a functional glycerol kinase in HUVECs. Conversely, the synthesis of triacylglycerols was very low (less than 5% of phospholipid synthesis). The incorporation rate of fatty acids into phospholipids showed that there is a specific fate for each fatty acid in respect to its chain length and saturation level. Moreover in steady state condition, increasing the long chain omega3 polyunsaturated fatty acids in the medium resulted in an increased polyunsaturated/saturated ratio in phospholipids (from 0.42 to 0.63). [(14)C]O(2) was produced form either [(14)C]-glucose or [(14)C]-palmitate indicating the functionality of the oxidation pathways, although beta-oxidation was less efficient than glucose oxidation. The endothelial cell lipid metabolism involves conventional pathways, with functional rates largely slower than in hepatocytes or in cardiomyocytes.


Assuntos
Células Endoteliais/metabolismo , Fosfolipídeos/metabolismo , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Humanos , Oxirredução , Fosfolipídeos/análise
12.
Mol Cell Biochem ; 283(1-2): 147-52, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16444597

RESUMO

The mechanisms of the adverse effects of free fatty acids on the ischemic-reperfused myocardium are not fully understood. Long-chain fatty acids, including palmitate, uncouple oxidative phosphorylation and should therefore promote the formation of oxygen-derived free radicals, with consequent adverse effects. Conversely, the antianginal agent trimetazidine (TMZ), known to inhibit cardiac fatty acid oxidation, could hypothetically lessen the formation of reactive oxygen species (ROS) and thus improve reperfusion mechanical function. Isolated perfused rat hearts underwent 30 min of total global ischemia followed by 30 min of reperfusion. Hearts were perfused with glucose 5.5 mmol/l or palmitate 1.5 mmol/l with or without TMZ (100 micromol/l). Ascorbyl free radical (AFR) release during perfusion periods was measured by electron spin resonance as a marker of oxidative stress. Post-ischemic recovery in the palmitate group of heart was lower than in the glucose group with a marked rise in diastolic tension and reduction in left ventricular developed pressure (Glucose: 85 +/- 11 mmHg; Palmitate: 10 +/- 6 mmHg; p < 0.001). TMZ decreased diastolic tension in both glucose- and in palmitate-perfused hearts. Release of AFR within the first minute of reperfusion was greater in palmitate-perfused hearts and in hearts perfused with either substrate, this marker of oxidative stress was decreased by TMZ (expressed in arbitrary units/ml; respectively: 8.49 +/- 1.24 vs. 1.06 +/- 0.70 p < 0.05; 12.47 +/- 2.49 vs. 3.37 +/- 1.29 p < 0.05). Palmitate increased the formation of ROS and reperfusion contracture. TMZ, a potential inhibitor of palmitate-induced mitochondrial uncoupling, decreased the formation of free radicals and improved postischemic mechanical dysfunction. The novel conclusion is that adverse effects of fatty acids on ischemic-reperfusion injury may be mediated, at least in part, by oxygen-derived free radicals.


Assuntos
Ácidos Graxos não Esterificados/toxicidade , Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Ácido Ascórbico/metabolismo , Radicais Livres/metabolismo , Masculino , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Oxirredução , Ratos , Ratos Wistar , Trimetazidina/uso terapêutico , Vasodilatadores/uso terapêutico
13.
Biochim Biophys Acta ; 1736(2): 152-62, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16153888

RESUMO

In the human heart, although all substrates compete for energy production, fatty acids (FA) represent the main substrate for ATP production. In the healthy heart, a balance between FA and carbohydrate utilization ensures that energy supply matches demand. This study was carried out to evaluate, in a model of spontaneously beating neonatal rat cardiomyocytes in culture, the hypothesis that glycerol could play a central role in the metabolic control of the routes involving long chain FAs and may then affect the balance between beta-oxidation and glucose oxidation. The intracellular-free glycerol significantly increased with extracellular glycerol concentration (0 to 660 microM). The synthesis of phospholipids was significantly increased in parallel with both extracellular glycerol (1.5 and 14.8 nmol glycerol/mg protein, at 82 and 660 microM of extracellular glycerol, respectively). The oxidation of glycerol increased proportionally to extracellular glycerol concentration (from 1 to 3 nmol glycerol/mg protein, at 82 microM and 660 microM extracellular glycerol, respectively, P<0.001). At its maximum, this oxidation represented 15% of the glucose oxidation, which was not affected by glycerol extracellular supply or intracellular availability. Conversely, extracellular glycerol significantly reduced the palmitate oxidation above (-47% at 660 microM glycerol), but not octanoate oxidation. Investigations on the mechanism of the decreased palmitate oxidation reveals a glycerol-dependent increase in malonyl-CoA associated with a significant decrease in CPT-1 activity which accounts for the difference between palmitate and octanoate. These results clearly demonstrate the importance of glycerol in regulating the cardiac metabolic pathways and energy balance.


Assuntos
Ácidos Graxos/metabolismo , Glicerol/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Caprilatos/metabolismo , Células Cultivadas , Ácidos Graxos/química , Glucose/metabolismo , Glicogênio/biossíntese , Humanos , Malonil Coenzima A/metabolismo , Miócitos Cardíacos/citologia , Oxirredução , Oxigênio/metabolismo , Ácido Palmítico/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Ratos , Ratos Wistar
14.
J Heart Lung Transplant ; 23(4): 487-91, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15063410

RESUMO

BACKGROUND: We investigated the influence of deep hypothermia (4 degrees C) during ischemia-reperfusion in the isolated rat heart model. METHODS: Isolated, perfused rat hearts underwent either 30 minutes of normothermic ischemia (control group) or 30 minutes of hypothermic ischemia (hypothermia-treated group), followed by 30 minutes of reperfusion in both groups. We recorded functional parameters and used electron spin resonance (ESR) spectroscopy to detect ascorbyl radicals, as markers of free-radical production, in samples of coronary effluents. RESULTS: Functional parameters were stable in the 2 groups during pre-ischemic and ischemic periods. During reperfusion, coronary flow, left diastolic ventricular pressure, left ventricular developed pressure, and heart rate more rapidly recovered to values close to those obtained during the pre-ischemic period in the hypothermia-treated group than in the control group. Moreover, the post-ischemic contracture observed in the control group did not appear in the hypothermia-treated group. Finally, ESR analysis showed that the post-ischemic release of ascorbyl radicals decreased in the hypothermia-treated group. CONCLUSIONS: These results demonstrate that the protective effect of hypothermia against functional injury caused by ischemia-reperfusion may decrease the free-radical burst at reperfusion.


Assuntos
Circulação Coronária/fisiologia , Ácido Desidroascórbico/análogos & derivados , Ácido Desidroascórbico/metabolismo , Hipotermia Induzida , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/terapia , Traumatismo por Reperfusão/prevenção & controle , Animais , Modelos Animais de Doenças , Espectroscopia de Ressonância de Spin Eletrônica , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Pressão Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...